Quadratic Equations & Inequalities
Sum & Product Of Roots
Sum of roots = $-\dfrac{b}{a}$
Product of roots = $\dfrac{c}{a}$
Product of roots = $\dfrac{c}{a}$
Quadratic Equation From Roots
$x^2-\text{(sum of roots)}x+\text{(product of roots)}=0$
2, 1 or 0 real roots
2 real roots: $b^2-4ac>0$
1 real root (2 equal roots): $b^2-4ac=0$
0 real roots: $b^2-4ac<0$
1 real root (2 equal roots): $b^2-4ac=0$
0 real roots: $b^2-4ac<0$
Curve Always Positive/Negative
$b^2-4ac<0$ (because curve has 0 real roots)
Line & Curve
Line intersect curve (at 2 points): $b^2-4ac>0$
Line tangent to curve: $b^2-4ac=0$
Line does not intersect curve: $b^2-4ac<0$
*Line meets curve: $b^2-4ac\geq0$
Line tangent to curve: $b^2-4ac=0$
Line does not intersect curve: $b^2-4ac<0$
*Line meets curve: $b^2-4ac\geq0$
Indices & Surds
Indices
1. $a^m \times a^n = a^{m+n}$
2. $a^m \div a^n = a^{m-n}$
3. $(a^m)^n = a^{mn}$
4. $a^0 = 1$ where $a \neq 0$
5. $a^{-n} = \frac{1}{a^n}$
6. $a^{\frac{1}{n}} = \sqrt[n]{a}$
7. $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$
8. $(a \times b)^n = a^n \times b^n$
9. $(\frac{a}{b})^n = \frac{a^n}{b^n}$
2. $a^m \div a^n = a^{m-n}$
3. $(a^m)^n = a^{mn}$
4. $a^0 = 1$ where $a \neq 0$
5. $a^{-n} = \frac{1}{a^n}$
6. $a^{\frac{1}{n}} = \sqrt[n]{a}$
7. $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$
8. $(a \times b)^n = a^n \times b^n$
9. $(\frac{a}{b})^n = \frac{a^n}{b^n}$
Surds
1. $\sqrt{a} \times {\sqrt{a}} = a$
2. $\sqrt{a} \times {\sqrt{b}} = \sqrt{ab}$
3. $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$
4. $m \sqrt{a} + n \sqrt{a} = (m+n) \sqrt{a}$
5. $m \sqrt{a} - n \sqrt{a} = (m-n) \sqrt{a}$
2. $\sqrt{a} \times {\sqrt{b}} = \sqrt{ab}$
3. $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$
4. $m \sqrt{a} + n \sqrt{a} = (m+n) \sqrt{a}$
5. $m \sqrt{a} - n \sqrt{a} = (m-n) \sqrt{a}$
Rationalise Denominator
For $\dfrac{k}{a\sqrt{b}}$, multiply numerator and denominator by $\sqrt{b}$.
For $\dfrac{k}{a\sqrt{b}+c\sqrt{d}}$, multiply by the conjugate, which is $a\sqrt{b}-c\sqrt{d}$.
For $\dfrac{k}{a\sqrt{b}+c\sqrt{d}}$, multiply by the conjugate, which is $a\sqrt{b}-c\sqrt{d}$.
Polynomials & Partial Fractions
Polynomial Division
$P(x)=\text{divisor}\times Q(x)+R(x)$
Remainder Theorem
If $P(x)$ is divided by $x-c$, remainder is $f(c)$.
If $P(x)$ is divided by $ax-b$, remainder is $f\left(\dfrac{b}{a}\right)$.
If $P(x)$ is divided by $ax-b$, remainder is $f\left(\dfrac{b}{a}\right)$.
Factor Theorem
If $x+c$ is a factor of $P(x)$, $f(-c)=0$.
If $ax+b$ is a factor of $P(x)$, $f\left(-\dfrac{b}{a}\right)=0$.
If $ax+b$ is a factor of $P(x)$, $f\left(-\dfrac{b}{a}\right)=0$.
Cubic Polynomials
$a^3+b^3 = (a+b)(a^2-ab+b^2)$
$a^3-b^3 = (a-b)(a^2+ab+b^2)$
$a^3-b^3 = (a-b)(a^2+ab+b^2)$
Partial Fractions
1. $\dfrac{f(x)}{(ax + b)(cx+d)} = \dfrac{A}{ax+b} + \dfrac{B}{cx+d}$
2. $\dfrac{f(x)}{(ax + b)(cx+d)^2} = \dfrac{A}{ax+b} + \dfrac{B}{cx+d} + \dfrac{C}{(cx+d)^2}$
3. $\dfrac{f(x)}{(ax + b)(x^2+c)} = \dfrac{A}{ax+b} + \dfrac{Bx+C}{x^2+c}$
Special case: $\dfrac{f(x)}{(ax + b)(x^2)} = \dfrac{A}{ax+b} + \dfrac{B}{x}+\dfrac{C}{x^2}$
2. $\dfrac{f(x)}{(ax + b)(cx+d)^2} = \dfrac{A}{ax+b} + \dfrac{B}{cx+d} + \dfrac{C}{(cx+d)^2}$
3. $\dfrac{f(x)}{(ax + b)(x^2+c)} = \dfrac{A}{ax+b} + \dfrac{Bx+C}{x^2+c}$
Special case: $\dfrac{f(x)}{(ax + b)(x^2)} = \dfrac{A}{ax+b} + \dfrac{B}{x}+\dfrac{C}{x^2}$
Binomial Expansions
Binomial Expansions
$(a+b)^n = a^n + \binom{n}{1}a^{n-1} b + \binom{n}{2}a^{n-2} b^2 + \ldots + \binom{n}{r}a^{n-r} b^r + \ldots + b^{n}$
General Term
$T_{r+1}=\binom{n}{r}a^{n-r} b^r$
n choose r
$\binom{n}{r}=\dfrac{n!}{r!(n-r)!} = \dfrac{n(n-1)\ldots(n-r+1)}{r!}$
Power, Exponential, Logarithmic & Modulus Functions
Modulus Functions
For $|a|=b \Rightarrow a=b$ or $a=-b$
Logarithm Definition
For $\log_a y$ to be defined,
1. $y>0$
2. $a>0, a\ne 1$
1. $y>0$
2. $a>0, a\ne 1$
Laws Of Logarithms
1. $\log_{a} x^n = n\log_{a} x$
2. $\log_{a} xy = \log_{a} x + \log_{a} y$
3. $\log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$
4. $\log_{a} b = \dfrac{\log_{c} b}{\log_{c} a}$
5. $\log_{a} b = \dfrac{1}{\log_{b} a}$
2. $\log_{a} xy = \log_{a} x + \log_{a} y$
3. $\log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$
4. $\log_{a} b = \dfrac{\log_{c} b}{\log_{c} a}$
5. $\log_{a} b = \dfrac{1}{\log_{b} a}$
Logarithms To Exponential
$\log_ay=x \Leftrightarrow y=a^x$
$\lg y=x \Leftrightarrow y=10^x$
$\ln y=x \Leftrightarrow y=e^x$
$\lg y=x \Leftrightarrow y=10^x$
$\ln y=x \Leftrightarrow y=e^x$
Trigonometric Functions, Identities & Equations
Special Angles
| θ | 0° | 30° | 45° | 60° | 90° |
|---|---|---|---|---|---|
| sin θ | $\frac{\sqrt{0}}{2}=0$ | $\frac{\sqrt{1}}{2}=\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{4}}{2}=1$ |
| cos θ | $\frac{\sqrt{4}}{2}=1$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{1}}{2}=\frac{1}{2}$ | $\frac{\sqrt{0}}{2}=0$ |
| tan θ | $0$ | $\frac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ | — |
Reciprocal Functions
1. $\text{cosec }\theta=\dfrac{1}{\sin\theta}$
2. $\sec\theta=\dfrac{1}{\cos\theta}$
3. $\cot\theta=\dfrac{1}{\tan\theta}$
2. $\sec\theta=\dfrac{1}{\cos\theta}$
3. $\cot\theta=\dfrac{1}{\tan\theta}$
Negative Functions
1. $\sin(-\theta)=-\sin\theta$
2. $\cos(-\theta)=\cos\theta$
3. $\tan(-\theta)=-\tan\theta$
2. $\cos(-\theta)=\cos\theta$
3. $\tan(-\theta)=-\tan\theta$
Tangent & Cotangent
1. $\tan\theta=\dfrac{\sin\theta}{\cos\theta}$
2. $\cot\theta=\dfrac{\cos\theta}{\sin\theta}$
2. $\cot\theta=\dfrac{\cos\theta}{\sin\theta}$
ASTC
S
A
T
C
180° ← → 90°
270° ← → 0°
Trigonometric Identities
1. $\sin^2{A} + \cos^2{A} = 1$
2. $\sec^2{A}=1+\tan^2{A}$
3. $\text{cosec}^2{A}=1 + \cot^2{A}$
2. $\sec^2{A}=1+\tan^2{A}$
3. $\text{cosec}^2{A}=1 + \cot^2{A}$
Addition Formulae
1. $\sin(A \pm B) = \sin A\cos B \pm \cos A \sin B$
2. $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
3. $\tan(A \pm B) = \dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
2. $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
3. $\tan(A \pm B) = \dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
Double Angle Formulae
1. $\sin 2A = 2\sin A \cos A$
2. $\cos2A = \cos^2A - \sin^2A= 2 \cos^2A -1= 1 - 2\sin^2A$
3. $\tan 2A = \dfrac{2\tan A}{1-\tan^2A}$
2. $\cos2A = \cos^2A - \sin^2A= 2 \cos^2A -1= 1 - 2\sin^2A$
3. $\tan 2A = \dfrac{2\tan A}{1-\tan^2A}$
R-Formulae
For $a > 0, b > 0, 0° < \alpha < 90°$,
1. $a\sin \theta \pm b \cos \theta = R \sin (\theta \pm \alpha)$
2. $a \cos \theta \pm b \sin \theta = R \cos (\theta \mp \alpha)$
where $R=\sqrt{a^2+b^2}$, $\tan\alpha=\dfrac{b}{a}$.
1. $a\sin \theta \pm b \cos \theta = R \sin (\theta \pm \alpha)$
2. $a \cos \theta \pm b \sin \theta = R \cos (\theta \mp \alpha)$
where $R=\sqrt{a^2+b^2}$, $\tan\alpha=\dfrac{b}{a}$.
Principal Values
1. $-\dfrac{\pi}{2}\leq\sin^{-1}\theta\leq\dfrac{\pi}{2}$
2. $0\leq\cos^{-1}\theta\leq\pi$
3. $-\dfrac{\pi}{2}<\tan^{-1}\theta<\dfrac{\pi}{2}$
2. $0\leq\cos^{-1}\theta\leq\pi$
3. $-\dfrac{\pi}{2}<\tan^{-1}\theta<\dfrac{\pi}{2}$
Transformation Of Trigonometric Graphs
Transformation to $y=a\sin x$ / $a\cos x$ / $a\tan x$
1. If $a>0$: Scaling of graph with a factor of $a$ parallel to the $y$-axis
2. If $a<0$: Scaling of graph with a factor of $a$ parallel to the $y$-axis, then reflecting of graph in $x$-axis
For sin & cos: amplitude becomes $|a|$
For tan: there is no amplitude
$\text{amplitude}=\dfrac{\text{maximum} -\text{minimum}}{2}$
2. If $a<0$: Scaling of graph with a factor of $a$ parallel to the $y$-axis, then reflecting of graph in $x$-axis
For sin & cos: amplitude becomes $|a|$
For tan: there is no amplitude
$\text{amplitude}=\dfrac{\text{maximum} -\text{minimum}}{2}$
Transformation to $y=\sin bx$ / $\cos bx$ / $\tan bx$
Scaling of graph with a factor of $\dfrac{1}{b}$ parallel to the $x$-axis
For sin & cos: period becomes $\dfrac{2\pi}{b}$
For tan: period becomes $\dfrac{\pi}{b}$
For sin & cos: period becomes $\dfrac{2\pi}{b}$
For tan: period becomes $\dfrac{\pi}{b}$
Transformation to $y=\sin x +c$ / $\cos x+c$ / $\tan x+c$
Translating of graph by $c$ units parallel to the $y$-axis
$c=\dfrac{\text{maximum}+\text{minimum}}{2}$
$c=\dfrac{\text{maximum}+\text{minimum}}{2}$
Transformation to $y=a\sin bx+c$
1. $y=\sin bx$: Scaling of graph with a factor of $\dfrac{1}{b}$ parallel to the $x$-axis
2. $y=a\sin bx$: Scaling of graph with a factor of $a$ parallel to the $y$-axis (reflecting of graph in $x$-axis if $a<0$)
3. $y=a\sin bx+c$: Translating of graph by $c$ units parallel to the $y$-axis
2. $y=a\sin bx$: Scaling of graph with a factor of $a$ parallel to the $y$-axis (reflecting of graph in $x$-axis if $a<0$)
3. $y=a\sin bx+c$: Translating of graph by $c$ units parallel to the $y$-axis
Coordinate Geometry
Gradient
$m=\dfrac{y_1-y_2}{x_1-x_2}$
Equation
$y-y_1=m(x-x_1)$
$y=mx+c$
$y=mx+c$
Midpoint
$\left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2}\right)$
Parallel Lines
$m_1=m_2$
Perpendicular Lines
$m_1=-\dfrac{1}{m_2}$
$m_1\times m_2=-1$
$m_1\times m_2=-1$
Area Of Quadrilateral
$A=\frac{1}{2}\left| \begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_1\\
y_1& y_2 & y_3 & y_4 & y_1\end{array} \right|$
$=\frac{1}{2}|(x_1y_2+x_2y_3+x_3y_4+x_4y_1)-(x_2y_1+x_3y_2+x_4y_3+x_1y_4)|$
Note: coordinates should be in anti-clockwise direction
$=\frac{1}{2}|(x_1y_2+x_2y_3+x_3y_4+x_4y_1)-(x_2y_1+x_3y_2+x_4y_3+x_1y_4)|$
Note: coordinates should be in anti-clockwise direction
Circle
$(x-a)^2+(y-b)^2=r^2$
$(a,b)$: centre of circle
$r$: radius
$x^2+y^2+2gx+2fy+c=0$
$(-g,-f)$: centre of circle
$\sqrt{f^2+g^2-c}$: radius
$(a,b)$: centre of circle
$r$: radius
$x^2+y^2+2gx+2fy+c=0$
$(-g,-f)$: centre of circle
$\sqrt{f^2+g^2-c}$: radius
Differentiation
Differentiation Rules
1. $\frac{\text{d}}{\text{d}x} c = 0$
2. $\frac{\text{d}}{\text{d}x} x^n = nx^{n-1}$
3. $\frac{\text{d}}{\text{d}x} \sin x = \cos x$
4. $\frac{\text{d}}{\text{d}x} \cos x = -\sin x$
5. $\frac{\text{d}}{\text{d}x} \tan x = \sec^2 x$
6. $\frac{\text{d}}{\text{d}x} e^{x} = e^{x}$
7. $\frac{\text{d}}{\text{d}x} \ln x = \frac{1}{x}$
Note: $\frac{\text{d}}{\text{d}x} kf(x)=k\times\frac{\text{d}}{\text{d}x} f(x)$
2. $\frac{\text{d}}{\text{d}x} x^n = nx^{n-1}$
3. $\frac{\text{d}}{\text{d}x} \sin x = \cos x$
4. $\frac{\text{d}}{\text{d}x} \cos x = -\sin x$
5. $\frac{\text{d}}{\text{d}x} \tan x = \sec^2 x$
6. $\frac{\text{d}}{\text{d}x} e^{x} = e^{x}$
7. $\frac{\text{d}}{\text{d}x} \ln x = \frac{1}{x}$
Note: $\frac{\text{d}}{\text{d}x} kf(x)=k\times\frac{\text{d}}{\text{d}x} f(x)$
Chain Rule
For $y=f(u)$ and $u=g(x)$,
$\dfrac{\text{d}y}{\text{d}x} = \dfrac{\text{d}y}{\text{d}u} \times \dfrac{\text{d}u}{\text{d}x}$
$\dfrac{\text{d}y}{\text{d}x} = \dfrac{\text{d}y}{\text{d}u} \times \dfrac{\text{d}u}{\text{d}x}$
Further Differentiation Rules (Chain Rule)
1. $\frac{\text{d}}{\text{d}x} (ax+b)^n = an(ax+b)^{n-1}$
2. $\frac{\text{d}}{\text{d}x} \sin (ax+b) = a\cos (ax+b)$
3. $\frac{\text{d}}{\text{d}x} \cos (ax+b) = -a\sin (ax+b)$
4. $\frac{\text{d}}{\text{d}x} \tan (ax+b) = a\sec^2 (ax+b)$
5. $\frac{\text{d}}{\text{d}x} e^{ax+b} = ae^{ax+b}$
6. $\frac{\text{d}}{\text{d}x} \ln (ax+b) = \frac{a}{ax+b}$
2. $\frac{\text{d}}{\text{d}x} \sin (ax+b) = a\cos (ax+b)$
3. $\frac{\text{d}}{\text{d}x} \cos (ax+b) = -a\sin (ax+b)$
4. $\frac{\text{d}}{\text{d}x} \tan (ax+b) = a\sec^2 (ax+b)$
5. $\frac{\text{d}}{\text{d}x} e^{ax+b} = ae^{ax+b}$
6. $\frac{\text{d}}{\text{d}x} \ln (ax+b) = \frac{a}{ax+b}$
Product Rule
$\dfrac{\text{d}}{\text{d}x}(uv) = u\dfrac{\text{d}v}{\text{d}x} + v\dfrac{\text{d}u}{\text{d}x}$
Quotient Rule
$\dfrac{\text{d}}{\text{d}x}\left(\dfrac{u}{v}\right)=\dfrac{v\frac{\text{d}u}{\text{d}x}-u\frac{\text{d}v}{\text{d}x}}{v^2}$
Gradient Of Curve, Tangent & Normal
$y=f(x)$
↓
$\dfrac{\text{d}y}{\text{d}x}$
gradient of curve
↓
Sub $x=k$
gradient of tangent at $x=k$
↓
$-\dfrac{1}{m}$
gradient of normal at $x=k$
Increasing & Decreasing Functions
1. For increasing functions, $\dfrac{\text{d}y}{\text{d}x}>0$.
2. For decreasing functions, $\dfrac{\text{d}y}{\text{d}x}<0$.
2. For decreasing functions, $\dfrac{\text{d}y}{\text{d}x}<0$.
Rates Of Change
$\dfrac{\text{d}y}{\text{d}t}=\dfrac{\text{d}y}{\text{d}x}\times\dfrac{\text{d}x}{\text{d}t}$
Stationary point
A stationary point is defined when $\dfrac{\text{d}y}{\text{d}x}=0$.
First derivative test
If $\dfrac{\text{d}y}{\text{d}x}=0$ for $x=k$, test for $k^-$, $k$, $k^+$.
Maximum point:
Minimum point:
Inflexion point:
Maximum point:
| $x$ | $k^-$ | $k$ | $k^+$ |
|---|---|---|---|
| $\dfrac{\text{d}y}{\text{d}x}$ | $+$ | $0$ | $-$ |
Minimum point:
| $x$ | $k^-$ | $k$ | $k^+$ |
|---|---|---|---|
| $\dfrac{\text{d}y}{\text{d}x}$ | $-$ | $0$ | $+$ |
Inflexion point:
| $x$ | $k^-$ | $k$ | $k^+$ |
|---|---|---|---|
| $\dfrac{\text{d}y}{\text{d}x}$ | $+$ | $0$ | $+$ |
| $-$ | $0$ | $-$ |
Second Derivative Test
1. If $\dfrac{\text{d}^2y}{\text{d}x^2}<0$, it is a maximum point.
2. If $\dfrac{\text{d}^2y}{\text{d}x^2}>0$, it is a minimum point.
3. If $\dfrac{\text{d}^2y}{\text{d}x^2}=0$, need to do first derivative test.
2. If $\dfrac{\text{d}^2y}{\text{d}x^2}>0$, it is a minimum point.
3. If $\dfrac{\text{d}^2y}{\text{d}x^2}=0$, need to do first derivative test.
Integration
Integration Rules
1. $\int k\,\text{d}x = kx +c$
2. $\int x^n\,\text{d}x = \dfrac{x^{n+1}}{n+1} +c, n\ne -1$
3. $\int \sin x\,\text{d}x = -\cos x +c$
4. $\int \cos x\,\text{d}x = \sin x +c$
5. $\int \sec^2 x\,\text{d}x = \tan x +c$
6. $\int e^x\,\text{d}x = e^x +c$
7. $\int \frac{1}{x}\,\text{d}x = \ln x +c$
Note: $\int kf(x)\,\text{d}x=k\times\int f(x)\,\text{d}x$
2. $\int x^n\,\text{d}x = \dfrac{x^{n+1}}{n+1} +c, n\ne -1$
3. $\int \sin x\,\text{d}x = -\cos x +c$
4. $\int \cos x\,\text{d}x = \sin x +c$
5. $\int \sec^2 x\,\text{d}x = \tan x +c$
6. $\int e^x\,\text{d}x = e^x +c$
7. $\int \frac{1}{x}\,\text{d}x = \ln x +c$
Note: $\int kf(x)\,\text{d}x=k\times\int f(x)\,\text{d}x$
Further Integration Rules
1. $\int (ax+b)^n\,\text{d}x = \dfrac{(ax+b)^{n+1}}{a(n+1)} +c, n \ne -1$
2. $\int \sin (ax+b)\,\text{d}x = -\dfrac{\cos (ax+b)}{a} +c$
3. $\int \cos (ax+b)\,\text{d}x = \dfrac{\sin (ax+b)}{a} +c$
4. $\int \sec^2 (ax+b)\,\text{d}x = \dfrac{\tan (ax+b)}{a} +c$
5. $\int e^{ax+b}\,\text{d}x = \dfrac{e^{ax+b}}{a} +c$
6. $\int \frac{1}{ax+b}\,\text{d}x = \dfrac{\ln (ax+b)}{a}+c$
2. $\int \sin (ax+b)\,\text{d}x = -\dfrac{\cos (ax+b)}{a} +c$
3. $\int \cos (ax+b)\,\text{d}x = \dfrac{\sin (ax+b)}{a} +c$
4. $\int \sec^2 (ax+b)\,\text{d}x = \dfrac{\tan (ax+b)}{a} +c$
5. $\int e^{ax+b}\,\text{d}x = \dfrac{e^{ax+b}}{a} +c$
6. $\int \frac{1}{ax+b}\,\text{d}x = \dfrac{\ln (ax+b)}{a}+c$
Definite Integral
For $\int f(x) \,\text{d}x = F(x) + c$,
$\displaystyle\int_a^b f(x) \,\text{d}x = F(b) -F(a)$.
$\displaystyle\int_a^b f(x) \,\text{d}x = F(b) -F(a)$.
Area With Respect To $x$-axis Or $y$-axis
For area with respect to $x$-axis, $\displaystyle\int_a^b f(x) \,\text{d}x$.
For area with respect to $y$-axis, $\displaystyle\int_c^d f(y) \,\text{d}y$.
Note: For area below the $x$-axis (taken with respect to $x$-axis) or area to the left of the $y$-axis (taken with respect to $y$-axis), it is taken as negative.
For area with respect to $y$-axis, $\displaystyle\int_c^d f(y) \,\text{d}y$.
Note: For area below the $x$-axis (taken with respect to $x$-axis) or area to the left of the $y$-axis (taken with respect to $y$-axis), it is taken as negative.
Kinematics
$s$
$\displaystyle\int v\,\text{d}t$
⟷
$v$
$\dfrac{\text{d}s}{\text{d}t}$
⟷
$a$
$\dfrac{\text{d}v}{\text{d}t}$
⟷
$\displaystyle\int a\,\text{d}t$
⟷
1. $v=\dfrac{\text{d}s}{\text{d}t}$
2. $a=\dfrac{\text{d}v}{\text{d}t}$
3. $s=\displaystyle\int v\,\text{d}t$
4. $v=\displaystyle\int a\,\text{d}t$
2. $a=\dfrac{\text{d}v}{\text{d}t}$
3. $s=\displaystyle\int v\,\text{d}t$
4. $v=\displaystyle\int a\,\text{d}t$
Note:
a. velocity, $v$ determines both the speed and the direction
b. $\text{average speed}=\dfrac{\text{total distance}}{\text{total time}}$
c. particle starts from origin, $s = 0$
d. instantaneously at rest, $v = 0$
e. max / min velocity, $a=\dfrac{\text{d}v}{\text{d}t}=0$
f. max / min displacement, $v=\dfrac{\text{d}s}{\text{d}t}=0$
a. velocity, $v$ determines both the speed and the direction
b. $\text{average speed}=\dfrac{\text{total distance}}{\text{total time}}$
c. particle starts from origin, $s = 0$
d. instantaneously at rest, $v = 0$
e. max / min velocity, $a=\dfrac{\text{d}v}{\text{d}t}=0$
f. max / min displacement, $v=\dfrac{\text{d}s}{\text{d}t}=0$