Teach
.sg
← Back to Mathematics
Differentiation
🦉
Differentiation Rules
$$1.\,\frac{\text{d}}{\text{d}x} c = 0$$
$$2.\,\frac{\text{d}}{\text{d}x} x^n = nx^{n-1}$$
$$3.\,\frac{\text{d}}{\text{d}x} \sin x = \cos x$$
$$4.\,\frac{\text{d}}{\text{d}x} \cos x = -\sin x$$
$$5.\,\frac{\text{d}}{\text{d}x} \tan x = \sec^2 x$$
$$6.\,\frac{\text{d}}{\text{d}x} e^{x} = e^{x}$$
$$7.\,\frac{\text{d}}{\text{d}x} \ln\; x = \frac{1}{x}$$
Note: $\frac{\text{d}}{\text{d}x} k\text{f}(x)=k\times\frac{\text{d}}{\text{d}x} \text{f}(x)$
🦉
Chain Rule
For $y=\text{f}(u)$ and $u=\text{g}(x)$,
$$\dfrac{\text{d}y}{\text{d}x} = \dfrac{\text{d}y}{\text{d}u} \times \dfrac{\text{d}u}{\text{d}x}$$
🦉
Further Differentiation Rules (Chain Rule)
$$1.\,\frac{\text{d}}{\text{d}x} (ax+b)^n = an(ax+b)^{n-1}$$
$$2.\,\frac{\text{d}}{\text{d}x} \sin (ax+b) = a\cos (ax+b)$$
$$3.\,\frac{\text{d}}{\text{d}x} \cos (ax+b) = -a\sin (ax+b)$$
$$4.\,\frac{\text{d}}{\text{d}x} \tan (ax+b) = a\sec^2 (ax+b)$$
$$5.\,\frac{\text{d}}{\text{d}x} e^{ax+b} = ae^{ax+b}$$
$$6.\,\frac{\text{d}}{\text{d}x} \ln\; (ax+b) = \frac{a}{ax+b}$$
🦉
Product Rule
$$\dfrac{\text{d}}{\text{d}x}(uv) = u\dfrac{\text{d}v}{\text{d}x} + v\dfrac{\text{d}u}{\text{d}x}$$
🦉
Quotient Rule
$$\dfrac{\text{d}}{\text{d}x}\left(\dfrac{u}{v}\right)=\dfrac{v\frac{\text{d}u}{\text{d}x}-u\frac{\text{d}v}{\text{d}x}}{v^2}$$
🦉
Gradient Of Curve
From $y=\text{f}(x)$,
$$\dfrac{\text{d}y}{\text{d}x} \text{ is the gradient of the curve.}$$
🦉
Gradient Of Tangent & Normal
From $\dfrac{\text{d}y}{\text{d}x}$, substitute $x=k$ to get $m$ (gradient of tangent).
$$-\dfrac{1}{m} \text{ is the gradient of the normal.}$$
🦉
Increasing & Decreasing Functions
$$\text{1. For increasing functions, } \dfrac{\text{d}y}{\text{d}x}>0$$
$$\text{2. For decreasing functions, } \dfrac{\text{d}y}{\text{d}x}<0$$
🦉
Rates Of Change
$$\dfrac{\text{d}y}{\text{d}t}=\dfrac{\text{d}y}{\text{d}x}\times\dfrac{\text{d}x}{\text{d}t}$$
🦉
First Derivative Test
If $\dfrac{\text{d}y}{\text{d}x}=0$ for $x=k$, test for $k^-$, $k$, $k^+$.
Maximum point:
$$\begin{array}{|c|c|c|c|} \hline x & k^- & k & k^+\\\hline \dfrac{\text{d}y}{\text{d}x} & + & 0 & - \\ \hline \end{array}$$
Minimum point:
$$\begin{array}{|c|c|c|c|} \hline x & k^- & k & k^+\\\hline \dfrac{\text{d}y}{\text{d}x} & - & 0 & + \\ \hline \end{array}$$
Inflexion point:
$$\begin{array}{|c|c|c|c|} \hline x & k^- & k & k^+\\\hline \dfrac{\text{d}y}{\text{d}x} & + & 0 & + \\\hline \dfrac{\text{d}y}{\text{d}x} & - & 0 & - \\\hline \end{array}$$
🦉
Second Derivative Test
$$\text{1. If } \dfrac{\text{d}^2y}{\text{d}x^2}<0, \text{ it is a maximum point.}$$
$$\text{2. If } \dfrac{\text{d}^2y}{\text{d}x^2}>0, \text{ it is a minimum point.}$$
$$\text{3. If } \dfrac{\text{d}^2y}{\text{d}x^2}=0, \text{ need to do first derivative test.}$$