Teach
.sg
← Back to Mathematics
Eigenvectors
🦉
Spectral Clustering Overview
To capture global connectivity structure, eigenvectors are really useful. Results will be spectral clustering.
Spectrum of matrix:
set of eigenvalues
Matrix:
Laplacian of graph
🦉
Labelled Graph
🦉
Adjacency Matrix
Adjacency matrix representation:
$$\left(\begin{array}{rrrrrr} 0 & 1 & 0 & 0 & 1 & 0\\ 1 & 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 1 & 1\\ 1 & 1 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ \end{array}\right)$$
🦉
Laplacian Matrix
Laplacian matrix representation:
$$\left(\begin{array}{rrrrrr} 2 & -1 & 0 & 0 & -1 & 0\\ -1 & 3 & -1 & 0 & -1 & 0\\ 0 & -1 & 2 & -1 & 0 & 0\\ 0 & 0 & -1 & 3 & -1 & -1\\ -1 & -1 & 0 & -1 & 3 & 0\\ 0 & 0 & 0 & -1 & 0 & 1\\ \end{array}\right)$$