Teach.sg ← Back to Mathematics

Numbers & Their Operations

🦉 Types of Numbers
Integers ($\mathbb{Z}$): $..., -3, -2, -1, 0, 1, 2, 3, 4, ...$
Prime: integers that are divisible by 1 and itself only, smallest prime number is 2
Rational numbers ($\mathbb{Q}$) $\frac{\text{integer}}{\text{integer}}$: $\frac{4}{7}, -3\frac{1}{8}, 0.3, 2.\dot{6}\dot{5}, 92, \sqrt{16}$
Irrational numbers: $\pi, \sqrt{2}, e$
Real numbers ($\mathbb{R}$): all numbers
🦉 Standard Form
$$A \times 10^n$$
where $n$ is an integer, and $1 \leq A < 10$
🦉 SI Prefix
$$\begin{array}{|c|c|} \hline \text{Prefix} & 10^n\\ \hline \text{pico} & 10^{-12} \\\hline \text{nano} & 10^{-9} \\\hline \text{micro} & 10^{-6} \\\hline \text{milli} & 10^{-3} \\\hline \text{kilo} & 10^3 \\\hline \text{mega} & 10^6 \\\hline \text{giga} & 10^9 \\\hline \text{tera} & 10^{12}\\\hline \end{array}$$
🦉 Indices
$$1.\,a^m \times a^n = a^{m+n}$$
$$2.\,a^m \div a^n = a^{m-n}$$
$$3.\,(a^m)^n = a^{mn}$$
$$4.\,(ab)^m = a^m b^m$$
$$5.\,\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
$$6.\,a^{-n} = \frac{1}{a^n}$$
$$7.\,a^0 = 1$$
$$8.\,a^\frac{1}{n} = \sqrt[n]{a}$$
$$9.\,a^\frac{m}{n} = (\sqrt[n]{a})^m$$